Estimating a Bounded Normal Mean Under the LINEX Loss Function
نویسنده
چکیده
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of minimax estimation of θ In this paper, by constructing a dominating class of estimators, we show that the maximum likelihood estimator is inadmissible. Then, as a competitor, the Bayes estimator associated with a uniform prior on the interval [−m,m] is proposed. Finally, considering risk performance as a comparison criterion, the estimators are compared and depending on the values taken by θ in the interval [−m,m], the appropriate estimator is suggested.
منابع مشابه
Estimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملEstimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملBAYES ESTIMATION USING A LINEX LOSS FUNCTION
This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density
متن کاملEmpirical Bayes Estimation for Exponential Model Using Non-parameter Polynomial Density Estimator
In this study, we study the empirical Bayes estimation of the parameter of the exponential distribution. In the empirical Bayes procedure, we employ the non-parameter polynomial density estimator to the estimation of the unknown marginal probability density function, instead of estimating the unknown prior probability density function of the parameter. Empirical Bayes estimators are derived for...
متن کامل